목차
import tensorflow as tf
from tensorflow.keras.callbacks import TensorBoard
import numpy as np
import datetime
# Define the model
model = tf.keras.Sequential(\[
tf.keras.layers.Dense(10, activation='relu', input\_shape=(10,)),
tf.keras.layers.Dense(1)
\])
model.compile(optimizer='adam', loss='mse')
# Generate dummy data
data = np.random.random((1000, 10))
labels = np.random.random((1000, 1))
# Custom TensorBoard callback
class CustomTensorBoardCallback(tf.keras.callbacks.Callback):
def \_\_init\_\_(self, log\_dir):
super(CustomTensorBoardCallback, self).\_\_init\_\_()
self.log\_dir = log\_dir
self.writer = tf.summary.create\_file\_writer(log\_dir)
def write\_log(self, name, loss, batch\_no):
with self.writer.as\_default():
tf.summary.scalar(name, loss, step=batch\_no)
self.writer.flush()
# Define log directory
log\_dir = "logs/fit/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
# Instantiate the custom callback
custom\_tensorboard\_callback = CustomTensorBoardCallback(log\_dir=log\_dir)
# Log example losses
epoch = 1
dis\_losses = \[0.2, 0.3, 0.25\] # Example discriminator losses
gen\_losses = \[0.4, 0.35, 0.45\] # Example generator losses
custom\_tensorboard\_callback.write\_log('discriminator\_loss', np.mean(dis\_losses), epoch)
custom\_tensorboard\_callback.write\_log('generator\_loss', np.mean(gen\_losses), epoch)
# Train the model
model.fit(data, labels, epochs=5, callbacks=\[custom\_tensorboard\_callback\])
tensorboard --logdir=logs/fit
'machine learning' 카테고리의 다른 글
간단한 GAN 모델 트레이닝 - MNIST dataset (0) | 2024.07.08 |
---|---|
AttributeError: module 'tensorflow' has no attribute 'Summary' (0) | 2024.07.08 |
keras_contrib 인스톨 하기 (0) | 2024.07.08 |
특정 파이썬 버전으로 가상환경 설치하기 (0) | 2024.07.08 |
python으로 새로운 가상환경 만들기 (0) | 2024.07.07 |