카테고리 없음

Day 93 - python 3.9로 tensorflow 사용하기

ksyke 2024. 12. 10. 09:57

목차

    # Python 3.9 and TensorFlow 2.14.0.
    # Python 3.10 and TensorFlow 2.14.0.~
    
    from tensorflow.keras.models import load_model  # TensorFlow is required for Keras to work
    from PIL import Image, ImageOps  # Install pillow instead of PIL
    import numpy as np
    
    # Disable scientific notation for clarity
    
    
    np.set_printoptions(suppress=True)
    
    # Load the model
    model = load_model("keras_model.h5", compile=False)
    
    # Load the labels
    class_names = open("labels.txt", "r",encoding='utf-8').readlines()
    
    # Create the array of the right shape to feed into the keras model
    # The 'length' or number of images you can put into the array is
    # determined by the first position in the shape tuple, in this case 1
    data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)
    
    # Replace this with the path to your image
    image = Image.open("test1.png").convert("RGB")
    
    # resizing the image to be at least 224x224 and then cropping from the center
    size = (224, 224)
    image = ImageOps.fit(image, size, Image.Resampling.LANCZOS)
    
    # turn the image into a numpy array
    image_array = np.asarray(image)
    
    # Normalize the image
    normalized_image_array = (image_array.astype(np.float32) / 127.5) - 1    #0~255.0 => (0/127.5)-1 ~ (255.0/127.5)-1 => -1 ~ 1
    
    # Load the image into the array
    data[0] = normalized_image_array
    
    # Predicts the model
    prediction = model.predict(data)
    index = np.argmax(prediction)
    class_name = class_names[index]
    confidence_score = prediction[0][index]
    
    # Print prediction and confidence score
    print("Class:", class_name[2:], end="")
    print("Confidence Score:", confidence_score)